Objective: To determine the association between use of school-based health centers (SBHCs) and school dropout.

Design: Quasi-experimental longitudinal analysis of a retrospective student cohort, with SBHC use as the independent variable. We statistically controlled for dropout risk and used propensity score regression adjustment to control for several factors associated with SBHC use.

Setting: Integrated database from an urban public school district (academic outcomes) and department of public health (SBHC use).

Participants: District-enrolled students in their first semester of ninth grade in 2005 (N=3334), followed up through their anticipated on-time graduation semester of 12th grade in 2009. Students were divided into 4 groups: never used (47%); low use (23%); moderate use (20%); and high users (10%).

Outcome Measure: Time to nongraduation (described as dropout).

Results: Low to moderate SBHC use (0.125-2.5 visits per semester) was associated with a 33% reduction in dropout compared with non-SBHC users. The high-use group (>2.5 visits per semester) did not have dropout rates that differed from nonusers. For SBHC users who did drop out, dropout occurred approximately 1 semester later than nonusers. Exploratory analyses revealed that the association between SBHC use and prevention of dropout was greatest for higher-risk students.

Conclusions: This study found an association between low to moderate SBHC use and reductions in dropout for high school students in an urban school district, especially for students at higher risk for dropout. This study supports the theory that benefits of SBHCs extend beyond managing physical and mental health needs to include academic outcomes.
studies have found little impact.7 We found only 1 peer-reviewed study examining the relationships between use of SBHCs, health outcomes, and academic outcomes, such as school attendance or high school completion.10

Our previous research has demonstrated a positive association between SBHC use and academic indicators, including grade point average and attendance, for students at heightened risk for academic failure.11 The present study extends this work by examining the longitudinal relationship between SBHC use and graduation.12 However, to date, the relationship between SBHC use and graduation for specific subpopulations of youth (eg, pregnant adolescents11) while other studies have found little impact.7 We found only 1 peer-reviewed study establishing a favorable relationship between SBHC use and graduation.12

Table 1. Sample Descriptives and Significant Differences Comparing No Use and Any Use

<table>
<thead>
<tr>
<th></th>
<th>No SBHC Use (n=1580)</th>
<th>Low SBHC Use (n=751)</th>
<th>Moderate SBHC Use (n=672)</th>
<th>High SBHC Use (n=331)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>65</td>
<td>54</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>25</td>
<td>23</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>African American</td>
<td>19</td>
<td>24</td>
<td>27</td>
<td>43</td>
</tr>
<tr>
<td>White</td>
<td>43</td>
<td>40</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>Hispanic</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>American Indian</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Free/reduced lunch</td>
<td>42</td>
<td>46</td>
<td>54</td>
<td>61</td>
</tr>
<tr>
<td>Limited English</td>
<td>19</td>
<td>18</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>RN visit first semester</td>
<td>21</td>
<td>27</td>
<td>42</td>
<td>67</td>
</tr>
<tr>
<td>Disciplinary action</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>In special education</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>GPA, mean (SD)</td>
<td>2.82 (1.05)</td>
<td>2.87 (0.98)</td>
<td>2.73 (0.93)</td>
<td>2.48 (0.89)</td>
</tr>
<tr>
<td>Attendance, %, mean (SD)</td>
<td>91 (14)</td>
<td>93 (11)</td>
<td>92 (10)</td>
<td>90 (12)</td>
</tr>
</tbody>
</table>

Abbreviations: GPA, grade point average; RN, registered nurse; SBHC, school-based health center.

a All indicators are from the first semester of high school. Statistical tests were 1-way analyses of variance comparing SBHC users with nonusers and were calculated while determining propensity score models.

b P<.001.
c P<.01.

demonstrated several intermediate outcomes for SBHC use (eg, increased health care access,7 decreased teen pregnancy,8 and decreased hospitalizations8), there remains a lack of rigorous research examining the relationships between use of SBHCs, health outcomes, and academic outcomes, such as school attendance or high school completion.10

Early research failed to find definitive relationships between SBHC use and academic indicators largely because of significant methodological challenges including difficulties linking health and academic data, paucity of longitudinal designs, and nonstandardized outcome measures.9 Some research describes a positive relationship between SBHC use and graduation for specific subpopulations of youth (eg, pregnant adolescents11) while other studies have found little impact.7 We found only 1 peer-reviewed study establishing a favorable relationship between SBHC use and graduation.12 However, to date, the study has not been replicated and their restricted sample (an alternative high school serving a high-risk population) limits the potential generalizability of findings.

Our previous research has demonstrated a positive association between SBHC use and academic indicators, including grade point average and attendance, for students at heightened risk for academic failure.11 The present study extends this work by examining the longitudinal relationship between SBHC use and graduation.12 However, to date, the study has not been replicated and their restricted sample (an alternative high school serving a high-risk population) limits the potential generalizability of findings.

Our study sample was divided into 2 groups: (1) students who used SBHCs at any point during their time enrolled in the school district (n=1754; 53%) and (2) students who never used SBHCs (n=1580; 47%). When compared with those who did not use SBHCs, users were more likely to be female, have had a school nurse visit (separate from SBHC), be eligible for free/reduced lunch, and be African American. School-based health center users were less likely to have limited English proficiency, be white, and be Asian (Table 1).

For those who used SBHCs, the number of visits over 4 years of high school ranged from 1 to 168 visits, but most students only used a SBHC a few times (mean=10.9, median=5, mode=1). The number of visits per semester that the student attended school, which adjusts for periods during which some students temporarily left school, ranged from 0.12 to 21 (mean=1.5, median=0.75, mode=0.12).

The University of Washington institutional review board approved this study.

DESCRIPTION OF THE SCHOOL-BASED HEALTH CENTERS

The SBHCs accessed in this study are each staffed by a midlevel medical provider, a masters-prepared mental health counselor, and a clinic coordinator. The SBHCs are open before, during, and after school. Physical health services provide a full range of adolescent health primary care: immunizations, well-child examinations, management of chronic conditions, reproductive health/family planning, and minor acute care. Services by mental health counselors commonly address depression, interpersonal issues, and anxiety, primarily through individual counseling. All services focus on prevention, with routine risk assessments of student users and an emphasis on identifying nonacademic barriers to success in school.

STUDY METHODS

STUDY POPULATION

Our study sample consisted of a cohort of youth in an urban school district scheduled to be in the graduating class of 2009 based on date of entry into high school. This included all youth who began high school in the fall semester 2005 and excluded those who dropped out of school during that semester (n=153), transferred into the school district after that semester (n=237), and those for whom we had no data on grade point average by spring of 2006 (n=113). The final sample was 3334 students.

The study sample was divided into 2 groups: (1) students who used SBHCs at any point during their time enrolled in the school district (n=1754; 53%) and (2) students who never used SBHCs (n=1580; 47%). When compared with those who did not use SBHCs, users were more likely to be female, have had a school nurse visit (separate from SBHC), be eligible for free/reduced lunch, and be African American. School-based health center users were less likely to have limited English proficiency, be white, and be Asian (Table 1).

For those who used SBHCs, the number of visits over 4 years of high school ranged from 1 to 168 visits, but most students only used a SBHC a few times (mean=10.9, median=5, mode=1). The number of visits per semester that the student attended school, which adjusts for periods during which some students temporarily left school, ranged from 0.12 to 21 (mean=1.5, median=0.75, mode=0.12).

The University of Washington institutional review board approved this study.

DESCRIPTION OF THE SCHOOL-BASED HEALTH CENTERS

The SBHCs accessed in this study are each staffed by a midlevel medical provider, a masters-prepared mental health counselor, and a clinic coordinator. The SBHCs are open before, during, and after school. Physical health services provide a full range of adolescent health primary care: immunizations, well-child examinations, management of chronic conditions, reproductive health/family planning, and minor acute care. Services by mental health counselors commonly address depression, interpersonal issues, and anxiety, primarily through individual counseling. All services focus on prevention, with routine risk assessments of student users and an emphasis on identifying nonacademic barriers to success in school.
Two administrative databases provided variables for this study, the public school database and the public health database, which were linked through unique identifiers. The school district’s database provided academic and demographic information for all youth enrolled in high school at any time between September 2005 and December 2009. Variables used as covariates and for our propensity scoring model (described later) were taken from the youth’s status in fall 2005 (time 1).

The public health data set was used to construct the primary independent variable, a categorical indicator of average monthly SBHC use (0 = none, 1 = low, 2 = moderate, 3 = high). We derived the mean amount of use per semester, instead of the total number of visits, to standardize use over time because not all students had the same amount of possible time to access SBHCs because of dropout, transfers, and temporary non-attendance. Non–SBHC users represented 47% of the sample. Of the remaining sample, the top 10% of users were categorized as “high users.” “Low users” (23% of the sample) had between 0.125 and 0.5 visit on average per semester and “moderate users” (20% of the sample) had between 0.51 and 2.5 visits.

The SBHC user groups differed in terms of the types of services they received. While the majority of visits across all user groups were for medical services, the relative proportion of mental health services differed. Forty-one percent of the total visits by the high users were for mental health reasons, compared with 24% of moderate and 14% of low users.

The outcome variable, dropout, was calculated as the number of semesters between fall 2005 (the first semester of freshman year) and the semester of nongraduation, defined by the school district as being expelled, attained maximum age without graduation (including students receiving special education), completing a General Educational Development program, or left school for various known reasons (suspension, expelled, employment, consecutive absences) and did not return or confirm transfer to another school.

Censored cases primarily include those who transferred to schools outside the school district or transferred to a private school or home-based instruction. This also includes smaller numbers of people who died or who were released with no reason listed (ie, “unknown”).

Starting with the first semester representing the first semester of the ninth-grade year. For a person who was not retained any years, the eighth semester would represent the last semester of the 12th-grade year.

Table 2. Descriptives by Graduation Status

<table>
<thead>
<tr>
<th>Graduated (n=2098)</th>
<th>Dropout (n=496)</th>
<th>Censored (n=740)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>48</td>
<td>58</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>African American</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Asian</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>White</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>Hispanic</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>GPA in 9th grade, mean (SD)</td>
<td>3.13 (0.75)</td>
<td>1.94 (1.06)</td>
</tr>
<tr>
<td>Attendance in 9th grade, %, mean (SD)</td>
<td>95 (6)</td>
<td>82 (19)</td>
</tr>
<tr>
<td>Free lunch eligible in 9th grade</td>
<td>35</td>
<td>73</td>
</tr>
<tr>
<td>Limited English proficiency in 9th grade</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Any disciplinary action in 9th grade</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Any special education services in 9th grade</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Any RN visit in 9th grade</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>Semester student graduated, ended school without graduation, or was censored</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st (fall 2005)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2nd</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3rd</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4th</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>5th</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6th</td>
<td>0.5</td>
<td>14</td>
</tr>
<tr>
<td>7th</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>8th</td>
<td>99</td>
<td>42</td>
</tr>
<tr>
<td>9th</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>Average SBHC visits per semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (n=1580)</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>Low (0.125-0.5) (n=751)</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Moderate (0.51-2.5) (n=672)</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>High (>2.51) (n=331)</td>
<td>9</td>
<td>13</td>
</tr>
</tbody>
</table>

Abbreviations: ANOVA, analysis of variance; ellipses, not applicable; GPA, grade point average; RN, registered nurse; SBHC, school-based health center.

a “Nongraduates” are defined by the public school system and include students who were expelled, attained maximum age without graduation (including students receiving special education), completed a General Educational Development program, or left school for various known reasons (suspension, expelled, employment, consecutive absences) and did not return or confirm transfer to another school.

b “Censored” cases primarily include those who transferred to schools outside the school district or transferred to a private school or home-based instruction. This also includes smaller numbers of people who died or who were released with no reason listed (ie, “unknown”).

c $P < .001$ (Pearson χ^2 or univariate ANOVA).

d $P < .05$ (Pearson χ^2 or univariate ANOVA).

e Starting with the first semester representing the first semester of the ninth-grade year. For a person who was not retained any years, the eighth semester would represent the last semester of the 12th-grade year.
We tested 3 models to determine the impact of SBHC use on time until dropout. Our first model was a Cox regression predicting the main effect of SBHC use on time until dropout. For the second model, we added propensity score as a covariate. Our third model included the propensity score covariate and other variables that preliminary analyses revealed had a significant bivariate relationship with time until dropout (as described in Table 2). These included first-semester grade point average, first-semester attendance, first-semester disciplinary action, race/ethnicity, sex, free/reduced lunch eligibility status, limited English proficiency status, and first-semester special education status. All 3 models were statistically significant and found highly similar estimates for variables related to our main research questions; hence, the third model is presented herein because it was the most comprehensive and had superior model fit. Our final model controlled for propensity to use SBHCs and variables predictive of graduation (Table 3). Compared with non-users, low use of SBHCs was related to a 33% decreased likelihood of dropout at any point (hazard ratio=0.67; 95% confidence interval=0.52-0.85), moderate use was related to a 32% decreased likelihood of dropout at any point (hazard ratio=0.68; 95% confidence interval=0.52-0.87), and high use was not significantly related to dropout (hazard ratio=0.82; 95% confidence interval=0.61-1.12). Examining estimated survival tables indicated that, of those who dropped out, students in the SBHC groups dropped out approximately 1 semester later than students who did not use SBHCs.

ADDITIONAL ANALYSES

We conducted additional exploratory post hoc analyses examining whether there were differential effects of SBHC use related to time 1 variables associated with a high risk of dropout, including attendance less than 90%, grade point average less than 2.5, free/reduced lunch status, being African American, and being Hispanic. Our intent was to explore whether SBHC use may be related to reduced disparities for high-risk groups in graduation rates. Hence, we estimated a series of Cox regression analyses examining the relationship of SBHC use to dropout, while stratifying participants by the presence of the ethnicity and risk variables mentioned earlier; no control variables were included.

Low SBHC use had a statistically significant relationship with a decreased likelihood of dropout in almost all models with the exception of white individuals and people who did not receive free/reduced lunch (Table 4). However, for moderate- and high-use categories, SBHC use was related to a statistically significant decreased likelihood of dropout only for high-risk categories (as defined earlier). For categories of students not considered high risk, moderate and high amounts of SBHC use had no statistically significant relationship to dropout, or in...
1 case (white individuals), high SBHC use was related to an increased probability of dropout.

COMMENT

We found strong and inverse relationships between SBHC use and dropout for the majority of youth using SBHCs, particularly among youth at higher relative risk for dropout. Low to moderate use of SBHCs was related to approximately 33% lower likelihood of high school dropout compared with non–SBHC users after controlling for factors related to SBHC use and graduation. The 10% of students who demonstrated the highest intensity of use did not differ from non–SBHC users in rate of dropout. Post hoc analyses provided preliminary evidence that there may be stronger inverse relationships between SBHC use and dropout for the highest-risk youth; however, because these analyses were exploratory, future research that intentionally studies this important issue is warranted.

STUDY LIMITATIONS

External Validity

A major strength of this study is that our sample greatly expands on samples in extant research by including all youth in an entire school district (not just high risk or indicated) across 4 years of high school. However, we did exclude some youth from the sample (described earlier). Because of these exclusionary criteria, our sample had a 15% dropout rate compared with the school district’s overall rate for the class of 2009, which was 27%. We were unable to examine the association between SBHC use and dropout for youth meeting our exclusionary criteria, many of whom were at increased risk for dropout. Therefore, these results may not be generalizable to the entire student population.

Furthermore, there are a variety of SBHC models across the country, so these findings should be considered within the context of the SBHC model to which the students were exposed. Similarly, students from this sample were all enrolled in an urban school district, and although there is significant socioeconomic and ethnocultural variability among the students, the applicability of these findings within rural or suburban areas warrants further study.

Internal Validity

As in all quasi-experimental studies using existing data sets, randomization to treatment was not possible. We used propensity score modification to reduce potential bias in treatment effects by controlling for factors likely related to SBHC use and graduation. However, it may be that SBHC use and dropout are not conditionally independent after controlling for the propensity score (ie, exhibit no relationship beyond that of chance), but there can be no empirical test of this assumption. For example, youth who are willing to use a SBHC may be higher on preexisting levels of school engagement or general motivation, both of which are associated with academic outcomes. This potential problem is inherent to use of the propensity score method; in spite of this, it remains a rigorous method to demonstrate treatment effects for quasi-experimental research. In our study, propensity score adjustment successfully reduced or practically eliminated bias for the included covariates.

Other Limitations

While our findings support the overall reduction in dropout for youth using SBHCs, and we were able to explore differential impact for higher-risk groups, our data raise other questions that we could not fully address given our

Table 4. Cox Regressions of SBHC Use and Dropout, Stratified by Race

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Low SBHC Use</th>
<th>Moderate SBHC Use</th>
<th>High SBHC Use</th>
<th>Model χ^2 (df=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>812</td>
<td>0.63 (0.43-0.90)</td>
<td>0.47 (0.31-0.70)</td>
<td>0.68 (0.46-0.99)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>359</td>
<td>0.41 (0.23-0.76)</td>
<td>0.43 (0.25-0.73)</td>
<td>0.39 (0.17-0.71)</td>
</tr>
<tr>
<td>White</td>
<td>1304</td>
<td>0.64 (0.38-1.08)</td>
<td>1.19 (0.74-1.92)</td>
<td>1.79 (1.00-3.21)</td>
</tr>
<tr>
<td>Asian</td>
<td>773</td>
<td>0.52 (0.27-1.00)</td>
<td>0.60 (0.31-1.17)</td>
<td>1.12 (0.48-2.64)</td>
</tr>
<tr>
<td>Free/reduced lunch status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free/reduced lunch</td>
<td>1569</td>
<td>0.56 (0.42-0.74)</td>
<td>0.48 (0.36-0.64)</td>
<td>0.69 (0.50-0.95)</td>
</tr>
<tr>
<td>No free/reduced lunch</td>
<td>1765</td>
<td>0.71 (0.44-1.14)</td>
<td>1.29 (0.84-1.99)</td>
<td>1.63 (0.93-2.85)</td>
</tr>
<tr>
<td>GPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2.5</td>
<td>1314</td>
<td>0.75 (0.57-0.99)</td>
<td>0.62 (0.47-0.83)</td>
<td>0.70 (0.50-0.97)</td>
</tr>
<tr>
<td>>2.5</td>
<td>2020</td>
<td>0.47 (0.29-0.76)</td>
<td>0.79 (0.51-1.23)</td>
<td>1.4 (0.69-2.36)</td>
</tr>
<tr>
<td>Attendance, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><90</td>
<td>743</td>
<td>0.69 (0.49-0.97)</td>
<td>0.45 (0.32-0.65)</td>
<td>0.60 (0.41-0.89)</td>
</tr>
<tr>
<td>>90</td>
<td>2591</td>
<td>0.69 (0.49-0.97)</td>
<td>0.98 (0.71-1.36)</td>
<td>1.31 (0.87-1.97)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; GPA, grade point average; HR, hazard ratio; SBHC, school-based health center.

a Native American excluded because of small sample size.

b Indicator contrast comparing each group to the category of no SBHC use.

$P<.05$.

d $P<.001$.

e $P<.01$.

reliance on administrative data sets. In particular, there
is a distinction between the user groups in the extent to
which service visits were related to medical vs mental
health reasons, with students in the highest user groups
having a greater proportion of visits for mental health rea-
sons, thus confounding use type with use amount. We
hypothesize that low to moderate use may be associated
with the largest reduction in dropout because of youth
getting preventive, emergent, or immediate needs met by
SBHC providers that would have otherwise impacted
school success. High SBHC use may be associated with
qualitatively different and/or more significant problems
independently associated with dropout but unable to be
controlled for in our analyses.

STUDY IMPLICATIONS

To our knowledge, this is the first study to examine the
longitudinal relationship between SBHC use and time to
dropout using a population-based sample of youth (ie, an
entire school district). There are several implications
for our findings.

SBHCs Appear to Lessen
the Achievement Gap

While higher-risk students were more likely to use SBHCs,
a result consistent with previous research, our
findings indicate they were also more likely to benefit aca-
demically from SBHC use.

SBHCs Have a Role
in Dropout Prevention Efforts

There are many influences on student dropout that ex-
tend beyond the purview of SBHCs, including student
characteristics such as poverty, low parental education,
and poor early school performance and school charac-
teristics such as school climate and teacher quality. How-
ever, SBHCs have a unique opportunity to address
dropout risk through influencing student health status.
Therefore, providing greater access to needed health
services generally, and SBHCs specifically, should be
considered among other comprehensive dropout preven-
tion strategies. Even a minimal number of visits has a
significant impact. School-based health care centers ap-
ppear to play an important preventive role for many stu-
dents. Unplanned pregnancies, untreated sexually trans-
mitted diseases, and undiagnosed minor acute illness
(eg, strep infections) have the potential to create signifi-
cant barriers to learning, yet can be effectively addressed
within brief, time-limited care. Such care may offset more
challenging trajectories impacting student achievement.

Further Research Is Needed

The implications and limitations of the current study as
well as the lack of development of the research base on
SBHCs indicate the need for more rigorous research. A
large-scale, multisite, prospective, school-level research
design that either randomizes schools to condition or uses
natural variation to investigate the mechanisms of im-
 pact of SBHCs could address questions left unanswered
by the current study, such as what student, provider, and
service factors are associated with health and academic
outcomes and identifying the predictors and implica-
tions of low, moderate, and high use. Such research could
also address questions of high relevance to the field of
SBHC implementation, such as how well student health
and mental health needs align with what is available and
what other ecological outcomes (eg, short-term health,
long-term health, employment, juvenile justice) are im-
 pacted by SBHC use.

Taken together with results from our previous study, evi-
dence is emerging that SBHC use is related to positive aca-
demic outcomes. Such evidence provides additional sup-
port for health care reform efforts that emphasize access
to preventive services for high-risk populations of youth,
as well as for promoting greater collaboration among sys-
tems. Preventing high school dropout is a shared agenda
for both public health and education. Promoting the well-
ness of at-risk populations and keeping these groups of
students connected to educational opportunities ad-
dresses inequities in health outcomes and disparities in aca-
demic achievement. In the context of both health care and
education reform efforts, SBHCs are a potential interven-
tion to be considered and promoted as new directions in
policies and programs are implemented.

Accepted for Publication: December 27, 2010.
Published Online: March 7, 2011. doi:10.1001
/archpediatrics.2011.10

Correspondence: Suzanne E. U. Kerns, PhD, Division
of Public Behavioral Health and Justice Policy, 2815 East-
lake Ave E, Ste 200, Seattle, WA 98102 (sekerns@uw.
edu).

Author Contributions: Dr Kerns has had full access to
all the data in the study and takes responsibility for the
integrity of the data and the accuracy of the data analy-
sis. Study concept and design: Kerns, Pullmann, Walker,
Lyon, and Cosgrove. Acquisition of data: Walker and Cos-
grove. Analysis and interpretation of data: Kerns, Pull-
mann, and Bruns. Drafting of the manuscript: Kerns, Pull-
mann, and Walker. Critical revision of the manuscript for
important intellectual content: Kerns, Pullmann, Lyon, Cos-
grove, and Bruns. Statistical analysis: Pullmann and
Walker. Obtained funding: Bruns. Administrative, tech-
nical, and material support: Kerns and Bruns. Study
supervision: Kerns and Bruns.

Financial Disclosure: None reported.

Funding/Support: Funding for this study was made pos-
sible by the Evidence-Based Practices Institute at the
University of Washington, part of the Division of Public
Behavioral Health and Justice Policy, and, in part, by grant
F32 MH086978 from the National Institute of Mental
Health.

Additional Contributions: We are thankful for the help
and support of Gerard “Sid” Sidorowicz (City of Se-
attle), Steven F. Wright (Seattle Public Schools), and the
staff at the City of Seattle Office for Education and Se-
attle Public Schools for providing timely access to and
understanding of the administrative data sets.
REFERENCES